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Abstract
In the automotive domain, the use of ECU (Electronic
Control Unit) to control several functions (such as engine
injection or ABS) increases. In order to diagnose such
systems, diagnosis trees are built. These trees allow the
garage mechanics to find the faulty component(s) by
performing a set of tests (measurements) which has the
lowest global cost as possible. Nowadays these diagnosis
trees are hand made by human experts. This task requires
more and more time and becomes more and more difficult as
the complexity of electric circuits and mecatronic systems
increases. Consequently, errors are not unusual in the
resulting diagnosis trees. As a matter of fact, it becomes
urgent to reduce the human intervention in the diagnosis tree
generation process at the lowest.

Concerning the diagnosis problem, most of the electric
circuits connected to the ECU can be viewed as a resistive
net supplied by one voltage source. Moreover, one can
emphasis that, on average, nineteen percent of failures are
due to wires. This paper presents a method which computes
an optimal diagnosis tree for this kind of electric circuits.

The first part of this paper deals with the model
description, the generation of test and fault spaces
corresponding to the studied system and the construction of a
cross-table, using these models. A cross-table assigns a set of
modalities for each couple (fault, test) coming from the
above defined fault and test spaces. A modality is an interval
of values taken by the considered test for the considered
fault. A test is said to be binary if it has only two modalities,
it is multi-modal otherwise. It is referred to as exclusive if,
for each fault in the fault space, one unique modality is
assigned to this test. Moreover, a weight is associated to
each test  to represent its cost, i.e. the difficulty for carrying
it out.

Pattipati [Pattipati, 1990] has proposed a heuristic leading
to an optimal diagnosis tree when used in combination with
an adapted AO* algorithm for a cross-table corresponding to
binary exclusive weighted tests. The second part of this
paper addresses the issue of adapting this heuristic to multi-
modality non-exclusive weighted tests which is the general
case in our application domain. It is shown that the resulting
heuristic also yields to an optimal diagnosis tree.
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0. Introduction

In the automotive domain, the use of ECU (Electronic
Control Unit) to control several functions (such as engine

injection or ABS) increases. In order to diagnose such
systems, diagnosis trees are built. These trees allow the
garage mechanics to find the faulty component(s) by
performing a set of tests (measurements) which has the
lowest global cost as possible. Nowadays these diagnosis
trees are hand made by human experts. This task requires
more and more time and becomes more and more difficult
as the complexity of electric circuits and mecatronic
systems increases. Consequently, errors are not unusual in
the resulting diagnosis trees. As a matter of fact, it becomes
urgent to reduce the human intervention in the diagnosis
tree generation process at the lowest.

Concerning the diagnosis problem, most of the electric
circuits connected to the ECU can be viewed as a resistive
net supplied by one voltage source. Moreover, one can
emphasis that, on average, nineteen percent of failures are
due to wires. This paper presents a method which computes
an optimal diagnosis tree for this kind of electric circuits.

The first part of this paper deals with the model
description, the generation of test and fault spaces
corresponding to the studied system and the construction of
a cross-table, using these models. A cross-table assigns a
set of modalities for each couple (fault, test) coming from
the above defined fault and test spaces. A modality is an
interval of values taken by the considered test for the
considered fault. A test is said to be binary if it has only
two modalities, it is multi-modal otherwise. It is referred to
as exclusive if, for each fault in the fault space, one unique
modality is assigned to this test. Moreover, a weight is
associated to each test  to represent its cost, i.e. the
difficulty for carrying it out.

Pattipati, in [Pattipati, 1990], has proposed a heuristic
leading to an optimal diagnosis tree when used in
combination with an adapted AO* algorithm for a cross-
table corresponding to binary exclusive weighted tests. The
second part of this paper addresses the issue of adapting
this heuristic to multi-modality non-exclusive weighted
tests which is the general case in our application domain. It
is shown that the resulting heuristic also yields to an
optimal diagnosis tree.

1. Problem Description and Case Study

Each fault of the fault space is defined by the set of initially
failed components (without including those components
whose fault results from a fault cascade effect). An



occurrence probability is affected to each fault of the fault
space. The test space is defined by all the accessible
measurements. The accessibility of the measure provides a
weight (also called cost of the test) which is affected to the
test expressing the amount of work required to execute this
test. By crossing over these two spaces, we obtain a table in
which every element is the modality of the test for the
corresponding fault. This modality is in the form of an
interval value, providing all the possible measure values for
the considered test and fault. In the general case, a test has
several modalities, which discretise the quantity space of
the test. From this table, called cross-table, we compute the
optimal diagnosis tree. The cross-table is obtained along a
model–based approach, in which the models are behavior
interval models taking into account the tolerances of the
components.

All  the concepts and algorithms presented in this paper
will be illustrated on a single circuit :

Figure 1.1 : Example

This circuit involves three different components :
• one ideal voltage source U 0

• one resistor R
• two wires characterized by their internal resistance r1

and r2

The wires must be considered as full components as most
of the problem in the automobile electronics result from
wire problems. This example is simple enough so as to
allow us to develop the computations, illustrating however
the approach without loss of generality. Despite its
simplicity, it is highly representative of the application
domain as it corresponds to the typical circuit of a sensor
providing information to the ECU (Electronic Control
Unit).

2. Partitionning the Test and Fault Spaces
from the Models

2.1. Models
The modeling of the system is obtained along a standard
component-connection approach. The component models
describe the intrinsic behavior of every type of component

and are stored in a library of component models, as in
[Duffaut, 1994]. They are automatically assembled from
the knowledge of the structure of the system to diagnose.

2.1.1. Component Models. The model of a component C
is characterized by three sets:

the set of internal parameters, { }P Pk1 ,..., ,

the set of (input and output) variables { }V Vl1 ,..., ,

the set of constraints among the variables which define
different behavior modes (BM), as in [Dague, 1987].

The same component may have several nominal and non-
nominal behavior modes (nominal BM, non-nominal BM)
defined by specific parameter and variable values. The
different behavior modes are defined by mutually exclusive
conditions on these values. A behavior mode is described
by a set of equations binding parameters and variables.
Moreover, according to component parameter value
interval, component faulty or normal states are defined.

Example 2.1 : Generic resistor model R  (with

[ ]R Rmin max,  tolerance on the R  value)

Figure 2.1 : Resistor representation

• Nominal behavior mode I I s≤
V V R Ie s− = ×
Component faulty state 1 : R R∈[ , [min0
Component normal state 1 : R R R∈[ , ]min max

Component faulty state 2 : R R∈ +∞] , [max

• Non-nominal behavior mode I I s>
I = 0
Component faulty state 1 : R ≈ +∞

2.1.2. System Model. As in [Darwiche, 1998], the system
structural model represents the way the different
components of the system are interconnected. The behavior
model of the whole system is obtained by instanciating the
component models and performing the adequate
connections. In this model, all the required variables of the
system are mentioned and all the components of the system
are instanciated from the component models. The system
model is organized so that the different nodes (i.e.
connection point of degree greater than two) and branches
(i.e. set of components between two consecutive nodes) can
be identified. In particular, the Kirchhoff laws are
automatically added to the model.

A system configuration (CONF) is defined as a specific
BM for every component. As soon as one component is in a
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non-nominal BM the configuration is also non-nominal
(non-nominal CONF).

Example 2.2 : One non-nominal configuration
Let us consider the fault scenario in which the voltage
source has had a pulse which is sufficient to deteriorate the
resistor ( I I s> ). The system configuration is hence given

by : wire r1  in nominal behavior mode, wire r2  in nominal

behavior mode and resistor in non-nominal behavior mode
since the constraint I I s≤  is violated.

A behavioral equation obtained from the component
models is associated to each component of the system.
Moreover, knowing how the components are
interconnected from the system model, the different
physical equations linking variables and parameters, which
just-determine the system, can be written.

If the physical equations are linear (it is the case in our
example as in any resistive network since the Ohm and
Kirchhoff laws are linear), the system model takes the
following form :

P T p× =
where P  is a n n×  square sparse matrix whose elements
involve the system resistive parameters, n  is the number
of tests, T  is the test vector and p  is a vector whose

elements involve the system electromotive parameters.
The execution of the Gauss-Jordan algorithm, detailed in

[Ciarlet, 1993], allows us to obtain the formal expression of
each test as a function of the system parameters. The
Gauss-Jordan algorithm is a direct method to solve linear
equation systems. The principle of this algorithm consists
in diagonalizing the P  matrix in n  iterations. At each
iteration a non null Gauss pivot is chosen. Let a

ii
, A , and

[ ]B b bn

T
= 1..  be the current chosen Gauss pivot, the

current matrix and, the second member vector,
respectively.
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Assuming that aii ≠ 0 , by applying

a a a j iij ij ii= ∀ ≠ , b b ai i ii=

( )a a a a k i j ikj kj ij ki= − × ∀ ≠ ∀ ≠

( )b b b a k ik k i ki= − × ∀ ≠
and then aii = 1 and a k iki = ∀ ≠0 , the current

matrix becomes A ’  and the current second member vector

[ ]B b b n
T’ ’ ’..= 1 .

At end of the Gauss-Jordan algorithm, the current matrix
is the n n×  identity matrix. Hence, the test expressions
are directly obtained in the second member vector.

System model in this configuration is given by the
following equation system:

I
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V V r I
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2.2. Computation of the Formal Expressions of the
Tests in every Behavior Mode
A test may be any measurement which can be performed
by the garage mechanics with a multi-meter : resistance
value, intensity or voltage. As a matter of fact, using all the
possible tests is highly redundant and would be
computationally unpractical. We assume that the set of tests
is restricted to a set which guarantees the diagnosability of
every considered fault. The problem of determining this set
is out of the scope of this paper (see [Van der Velde, 1984]
and [Basseville, 1987]). All these tests are given by the
value of formal expressions involving several parameters or
variables. Since the variables can be formally expressed
from the parameters, the formal expressions can be brought
back to involve only parameters. In the following, a test is
indifferently used to refer to the formal expression or its
value.



Example 2.3 : The matrix representation and test
expressions for the normal configuration are:
• Matrix representation
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• Test Expressions
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2.3.Fault Space
The aim of this subsection is to reduce the entire fault space
to a subset of faults which have the highest probabilities to
occur.

2.3.1.Fault Classification. Pure Single Faults (PSF) are
defined as faults whose origin is one unique abnormal
component. PSF include also cascaded abnormal
component faults. Independent Multiple Faults (IMF)
represent faults in which several components are abnormal
without affecting  common parts of the system.
Overlapping Multiple Faults (OMF) represent faults in
which several components are abnormal and affect some
common parts of the system.

Obviously, IMF can be seen as a set of PSF.
Consequently, if a diagnosis tree is able to detect PSF, it is
also able to detect IMF by using this tree as many times as
required. In our application domain, OMF have an
occurrence probability lower than any PSF occurrence
probability.

Moreover, in the case of multiple faults, we assume that it
is more probable that the faults occur in independent sub-
systems. Therefore, OMF have an occurrence probability
lower than any IMF occurrence probability. This can
summarized as follows :

( ) ( ) ( )Pr Pr PrPSF IMF OMF> >
 This paper presents our approach to deal with the PSF

and consequently with the IMF as well. In practice, the
occurrence probability is obtained from the Mean Time

Between Failures (MTBF) given by the designer, as shown
in [Srinivas, 1994]. The PSF set is obtained by considering
one by one all the possible faulty states for every
component. The no fault situation (i.e. all the components
behaving normally) is processed as a PSF, and it is referred
to as a specific PSF. A PSF hence indifferently refers to the
configuration of the system (in terms of the behavior mode
of every component) or to the fault itself. The IMF case is
processed as subsequent PSF.

3. Test and Fault Spaces Cross-Table
Generation

The aim of this section is to obtain the cross-table between
test and fault spaces. Every element of the table is the
modality of the test for the corresponding PSF. This
modality provides all the possible measure values for the
considered test and PSF. In our case, a PSF is modeled  by
a component parameter taking its value in a non normal
numeric interval. The normal interval is obtained from the
normal value plus or minus a tolerance. For instance, a
resistor R  of normal value R0  will give rise to three

following cases :

[ ]( ) [ ]( )
[ ]( )

R R R R R

R R

∈ − ∨ ∈ − +

∨ ∈ + +∞

0 0 0 0

0

, ,

,

ε ε ε

ε
where ε  represents the tolerance on the R0  parameter

numeric value.
Moreover, each PSF is defined by one component faulty

state, so, one non-normal parameter interval. If, for the
current CONF, and for the studied PSF, one limit of the
CONF is reached for one of the system variable. So, it is
necessary to divide this PSF into two PSF : the first one
describes the originally studied PSF with the non-normal
parameter interval such that this limit is never reached, and
the second one described the originally studied PSF with
the non-normal parameter interval such that this limit is
always reached.

Consequently, this table is obtained by simulation, as for
the tool proposed in [Seibold, 1994], according to the
algorithm 3.1., called simulation algorithm.
The computation of the formal expression of the tests is
performed within an interval optimization framework,
using Classical Interval Analysis [Moore, 1979] and also
Modal Interval Analysis [SIGLA/X, 1998]. For the
particular formal expressions obtained for resistive
networks supplied by one unique voltage source, it is
possible to reach exact optimization values (the proof of
this property is out of the scope of this paper).

From the algorithm 3.1., the value domain of every test is
partitioned into interval values which may be associated to



PSF. The exact bounds of the interval values are
approximated according to the precision of the

measurement instrument. The resulting partition defines the
modalities of the test, as shown in example 3.3..

Algorithm 3.1. : Simulation algorithm

Procedure Main_Treatment()
Begin
   For every Nominal-CONF do
      For every PSF do
         Recursive_Treatment (Nominal-CONF,PSF);
      End For
   End For
End

Procedure Recursive_Treatment (CONF,PSF)
Begin
   Matrix expression of the system;
   Formal expressions of the tests;
   Optimization of the formal expressions of the tests;
   If (at least one test value interval contains a CONF limit) then
      For each of the 2n sets of n intervals obtained with n couples of
       intervals (under and over each of the n reached limits) do
         Evaluate the non-normal parameter interval;
         Create New-PSF with this new non-normal parameter interval;
         CONF:= change, in CONF, the non-consistent BM(s) into the
          consistent ones according to the studied set of n intervals;
         Recursive_Treatment (CONF, New-PSF);
      End For
   Else store PSF with CONF in cross-table;
   End If
End

Example 3.2. : Nominal configuration and over voltage

PSF. The over voltage PSF is defined by [ ]U 0 2 2∈ +∞. , .

Let us assume that normal values for the other parameters

are : [ ]r1 0 2∈ , , [ ]r2 0 2∈ , and [ ]R ∈ 2350 2670, .

Moreover, the nominal CONF is constrained by the

following condition : I ≤ × −2 10 3 . The optimization of
the test I  formal expression in the nominal CONF gives

the interval [ ]I ∈ × +∞−0 822 10 3. , .

So, since [ ]2 10 0822 103 3× ∈ × +∞− −. , , we have to

divide the PSF into PSF1 defined by

[ ]I ∈ × ×− −0822 10 2 103 3. ,  and PSF2 defined by

[ ]I ∈ × +∞−2 10 3 , .

According to the optimization of the test I  formal
expression, we have : 

[ ] [ ]I U∈ × × ⇒ ∈− −0822 10 2 10 2 2 53483 3
0. , . , .

 [ ] [ ]I U∈ × +∞ ⇒ ∈ +∞−2 10 4 73
0, . , .

Hence, the two over voltage PSF obtained are defined as
follows :

• PSF1 defined by [ ]U 0 2 2 5348∈ . , .  in nominal

CONF

• PSF2 defined by  [ ]U 0 4 7∈ +∞. ,  in  the

corresponding non nominal CONF obtained from the
nominal CONF by replacing the nominal resistor
behavior mode (characterized by I I s≤ ) by the non

nominal one (characterized by I I s> ).



Example 3.3. : Cross-table

Component Fault CONF VA VB VC I
F0 ∅ Nominal [1.8,2.2] [1.798,2.2] [0,1.8×10-3] [6.7×10-4,9.36×10-4]
F1 U0∈[0,1.8] Nominal [0,1.8] [0,1.8] [0,1.5×10-3] [0,7.6×10-4]
F21 U0∈[2.2,5.348] Nominal [2.2,5.348] [2.198,5.348] [0,4.5×10-3] [8.22×10-4,2×10-3]
F22 U0∈[4.7, +∞] Non nominal [4.7,+∞] [4.7, +∞] 0 0
F3 r1∈[2, +∞] Nominal [1.8,2.2] [0,2.198] [0,1.869×10-3] [0,9.35×10-4]
F4 r2∈[2, +∞] Nominal [1.8,2.2] [1.798,2.2] [1.34×10-3,2.2] [0,9.35×10-4]
F51 R∈[0,1100] Nominal [1.8,2.2] [1.796,2.2] [0,4.89×10-3] [7.6×10-4,2×10-3]
F52 R∈[896, 2350] Non nominal [1.8,2.2] [1.8,2.2] 0 0
F6 R∈[2670, +∞] Nominal [1.8,2.2] [1.798,2.2] [0,1.646×10-3] [0,8.22×10-4]

For the test VA, assuming that the voltage precision of the
multi-meter is 1×10-1 V, the following modalities are
obtained :

M1 M2 M3 M4 M5
VA∈[0,1.8] VA∈[1.8,2.2] VA∈[2.2,4.7] VA∈[4.7,5.3] VA∈[5.3,+∞]

F1 F0 F3 F4 F51 F52 F6 F21 F21 F22 F22

4. Optimal Diagnosis Tree Generation

First of all, this section defines accurately the objective
function which is used to compare diagnosis trees. Its
optimization provides the optimal diagnosis tree. This
function combines the faults a priori occurrence probability
with the costs of the tests to be performed to isolate the
faults. The cost of a given test is given as a weight and
represents the amount of work required in the garage to
perform the test. These costs are assumed to be available
for all the tests. Then, a method for double modality tests is
presented and an extension of this method to non-exclusive
multi-modality tests is suggested. A test is said to be
exclusive if any pair of candidate fault sets corresponding
to two distinct modalities for the concerned test do not
share any fault. This method is based on the AO* algorithm
with an adequate heuristic. The Huffman algorithm is at the
heart of the heuristics presented for both cases.

The contribution of this paper is to propose a proof of the
optimality of the Huffman algorithm for the diagnosis tree
generation problem with binary exclusive unit weighted
tests, what is not clearly done in [Pattipati, 1990].
Moreover, this proof is used to demonstrate the optimality
of our multi-modality extension algorithm for the diagnosis
tree generation problem with multi-modality exclusive unit
weighted tests.

4.1. Optimality
Let us assume a diagnosis tree T  which separates n  PSF.

Let us call { }F Fn1 ,...,  the n  PSF, Pi  the prior

occurrence probability of each Fi  fault with Pi
i

n

=
=
∑ 1

1

,

( ) ( ){ }L F L Fi m ii1 ,...,  the mi  leaves of the diagnosis

tree T  which contain the Fi  fault, Pj
i  the probability of

Fi  on the j th  leave with Pj
i

j

mi

=
=

∑ 1
1

, and ( )( )C L Fj i

the sum of the costs of the tests required to connect the j th

leave containing the Fi  fault from the root of the diagnosis

tree T .
Then, the objective function of a diagnosis tree T  to

optimize, noticed ( )K T , can be computed in two steps.

The first step consists in evaluating ( )C Fi  which is a

weighted sum, on the mi  leaves containing the Fi  fault, of

( )( )C L Fj i . The second step is the computation of the

( )K T  value as a weighted sum, on the n  faults, of

( )C Fi .

( ) ( )

( ) ( )
K T P C F

C F P C L F

i i
i
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j
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= ×
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∑
1

1
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4.2. AO* Algorithm

4.2.1. Principle. An AO* algorithm is based on an
AND/OR tree T . An AND/OR tree contains AND nodes
which have the property to be true if all their children are
true and OR nodes which have the property to be true if at
least one of their children is true. Because of the
complexity, T  is not generally explicitly represented so, it
is said to be implicit. Only the ground elements, such as the
generation of their whole combinatory gives explicitly T ,
are available. So, the goal of this algorithm is, starting form
this ground element knowledge about T , find the optimal

sub-tree T *  of T  which connects a sub-set of leaves of T
to its root.

Let us come back to the diagnosis tree problem. An OR
node corresponds to a node labeled by a set of possible PSF
and an AND node represents a test, each of its branches
being the possible modalities of the test, corresponding
indeed to a set of PSF. Hence, a diagnosis tree can be seen
as an AND/OR tree in which each OR node has one AND
node child and each AND node has n  OR node children,
n  being the modality cardinality (i.e. number of
modalities) of the test. The root of a diagnosis tree is an OR
node whose label contains all the PSF to discriminate. T  is
the implicit tree that could be built by considering all the
AND nodes as children of each OR node instead of only

one. During the algorithm, T ’ is an explicit current sub-
tree of T , which corresponds, at end of the algorithm, to

the optimal sub-tree T *  of T . In other words, T *

provides the optimal sequence of tests to be performed in
order to discriminate all the PSF.

4.2.2.Heuristic. The AO* algorithm uses a heuristic to
orient the search. A heuristic is a function which gives an
estimate, for each node, of the cost of the subsequent sub-
tree, considering this node as its root. Let us call a  the

studied node, ( )h a*  the exact evaluation of  the

corresponding sub-tree and ( )h a  the one estimated by the
heuristic. It has been proven that if for each node a

( ) ( )h a h a< *  (admissibility property of h , see [Bagchi,
1983]) then the algorithm converges to the optimal sub-tree

T *  of T . Moreover, the convergence rate is directly

related to the quality of the heuristic h . The closer ( )h a

of ( )h a* , the lowest is the number of useless nodes (i.e.

nodes which do not appear in the optimal sub-tree T * )
expanded during the algorithm. Let us analyze the two
extreme cases :

• if there is no heuristic then the implicit tree T  must be

completely explored to find the optimal sub-tree T * ,

• with a heuristic h  such as ( ) ( )h a h a= * , then the

optimal sub-tree T *  is obtained immediately without
expanding any useless node.

It is important to outline that, in the diagnosis tree
problem, since each OR node must have only one AND
node child, only the OR nodes need to be estimated. In
consequence, the heuristic concerns the OR nodes only.

4.2.3. Huffman Algorithm. For a set F  of n  faults Fi

with their respective a priori occurrence probabilities Pi

and a set S  of m  binary exclusive tests S j  affected with

the same weight c j = 1, the Huffman algorithm builds an

optimal binary diagnosis tree T * .
Since the tests are exclusive, there is only one leave

( )L Fi  for each fault Fi  and the objective function ( )K T
becomes the weighted sum of the depth of T .

( )K T P C Fi i
i

n

( ) = ×
=
∑

1

where, given that the tests are unit weighted,

( ) ( )( )C F C L Fi i=   corresponds to the level in T   of the

leave which contains Fi .

Property 4.1.
A binary diagnosis tree T , admissible solution of the
considered problem, verifies the node ordering condition ,

if : each node of the i th  level has an a priori occurrence
probability greater than the one of any node appearing on a
level j such that d j i≥ > ≥ 0 , where d  represents the

diagnosis tree depth.
Then, such binary diagnosis tree T  is optimal according

to the objective function ( )K T .
The proof of property 4.1. can be found in appendix A.



Algorithm 4.2. : Huffman algorithm

Begin
i:=n;
Create n leaves corresponding to the n faults;
While (i>1) do

Order the i faults by their increasing occurrence probability;
Pi-1:=Pi-1+Pi; (Pi and Pi-1 are the two least probabilities)
Create new node Fi-1 father of Fi and old Fi-1 nodes;
Suppress Fi fault and Pi probability from the fault set;
i:=i-1;

End While
return node F1 root of the created optimal tree;

End

Theorem 4.3.
In case of exclusive and unit weighted binary tests, the
Huffman algorithm creates an optimal complete binary

diagnosis tree according to the objective function ( )K T .
The proof of theorem 4.3. can be found in appendix B.

4.3.Heuristic in Case of Exclusive Binary Tests
with Different Costs
As seen previously, the Huffman algorithm builds an
optimal diagnosis tree for exclusive binary tests S j  whose

weights are c j = 1. What about the optimality of the

obtained diagnosis tree when the different possible tests
have different weights? In this case, the diagnosis tree is
not optimal anymore. So, the idea is to use an AO*
algorithm with an admissible heuristic taking into account
the different test weights in order to reach optimality.

Let a  be any OR node and K *  the optimal objective

function value of the optimal diagnosis tree T *  obtained
by the Huffman algorithm for the set of faults which are
contained in a  assuming all exclusive unit weighted
( c j = 1) binary test S j . The m  available tests are

ordered by increasing weights such as 0 1< < <c cm... .

The admissible heuristic hP  proposed by Pattipati is then

expressed as follows :

( )h a c K K cP j
j

K

K
= + −

=
+∑ [ ].* ’

’

’

1
1
 where K ’  is

the integer part of K * .
This heuristic is equivalent to build a Huffman tree with

the tests of lowest weight. Consequently, this heuristic
verifies the admissibility property, and hence, leads to the
optimal tree by using the AO* algorithm.

4.4.Extension to Non Exclusive Multi-Modality
Tests

4.4.1. Non Exclusivity Assumption. It is obvious that the
non exclusive test assumption makes the discrimination of
a given fault set with the same test set more difficult. That
is, the optimal diagnosis tree obtained by the Huffman
algorithm with the non exclusive test assumption is deeper
than the one with the exclusive test assumption.
Consequently, assuming a priori the test exclusivity
assumption in an admissible heuristic h  does not affect  its
admissibility property. However, it is important to outline
that, when some of the tests are actually non-exclusive, this
decreases the quality of the heuristic (i.e. the distance

between h  and h*  increases).

4.4.2. Multi-Modality Assumption. At the contrary, the
test multi-modality assumption makes the discrimination of
a same fault set with a same test set easier than the binary
test assumption. That is, optimal diagnosis tree obtained by
Huffman algorithm with the test binary assumption is
deeper than the one with the multi-modality test
assumption. Consequently, considering in priority tests
which have the biggest modality cardinality in an
admissible heuristic h , reduces the depth of the diagnosis
tree and, so, allows to keep its admissibility property.

Let T *  be the optimal diagnosis tree obtained by
Huffman algorithm for the considered fault set assuming
exclusive unit weighted ( c j = 1) binary tests S j . The

multi-modality extension algorithm modifies T *  so as to

obtain TM
*  the optimal diagnosis tree for the considered

fault set assuming exclusive unit weighted ( c j = 1)  tests

S j  having the biggest available modality cardinalities.



Algorithm 4.4. : Multi-modality extension algorithm

Begin
Order the m test modality cardinalities such as (M1≥...≥Mm≥2);
i:=1;
Finish:=false;
While ((Finish=false)AND(Mi>2)) do

Finish:=true;
For all non-leave nodes of level (i-1) do

Card:=2;
While ((card<Mi)AND

(it exists at least one non leave child)) do
break the biggest child;
card:=card+1;
reorder the children of the studied node;

End While
If (card=Mi) then Finish:=false;

End For
i:=i+1;
End While

End

Theorem 4.5.
In case of exclusive unit weighted multi-modality tests,
from the optimal binary diagnosis tree obtained by

Huffman algorithm T * , the multi-modality extension

algorithm creates an optimal diagnosis tree TM
*  according

to the objective function ( )K T .
The proof of theorem 4.5. can be found in appendix C.

4.4.3. Heuristic in Case of Non Exclusive Multi-
Modality Tests. As seen previously, to take into account
different test weights, an AO* algorithm is used in order to
lead to an optimal diagnosis tree.
Contrarily to the case of exclusive multi-modality tests,
Pattipati heuristic is not applied directly from the optimal

binary diagnosis tree T *  obtained by the Huffman
algorithm,  but from the optimal multi-modality diagnosis

tree TM
*  obtained by the multi-modality  extension

algorithm applied on the optimal binary diagnosis tree T *

obtained by the Huffman algorithm initially computed. The
m  available tests are ordered by their increasing weights
such as 0 1< < <c cm... .

The admissible heuristic hP  proposed by Pattipati is then

expressed as follows :

( )h a c K K cP j
j

K

K
= + −

=
+∑ [ ].* ’

’

’

1
1
 where K ’  is

the integer part of K * .
This heuristic is equivalent to build a Huffman tree with

the highest available modality cardinality tests affected by
the lowest available test weights. Consequently, this

heuristic reaches the admissibility property, and so, leads to
the optimal tree by using the AO* algorithm.

5. Conclusion

The first part of the paper applies the standard model-based
component-connection approach to the representation of
systems in the linear electronic circuit domain. The notions
of nominal and non-nominal behavior mode for a
component and the corresponding notions of nominal and
non-nominal configuration at the level of the whole system,
as well as the notions of normal and faulty states are clearly
stated and distinguished. Moreover, an interesting fault
classification in PSF, IMF and OMF is defined. According
to these definitions, an adapted simulation algorithm allows
to obtain the cross-table.

The second part of the paper discusses the adaptation of
the method proposed by [Pattipati, 1990] to the specific
resistive net problem. This method is based on an AO*
algorithm with an admissible heuristic computed from the
Huffman algorithm which converges to the optimal tree
faster than the entropy based heuristic for exclusive binary
tests affected by different weights. The cross-table may
have non-exclusive multi-modality tests affected by
different weights. It is shown how to modify the
computation of the Pattipati heuristic in order to have an
admissible heuristic allowing to obtain, by using an AO*
algorithm, an optimal diagnosis tree for non-exclusive
multi-modality tests affected by different weights.

Unfortunately, the more an admissible heuristic is able to
take into account several constraints (as it is the case here),
the more the quality of this heuristic decreases. Obviously,
this admissible heuristic converges more slowly to the



optimal diagnosis tree with non-exclusive multi-modality
tests, than the Pattipati heuristic with exclusive binary tests.
However, as the diagnosis trees are built off-line, the
convergence speed to the optimal diagnosis tree is not a
strong requisite in our problem.

Appendix A

Property 4.1.
A binary diagnosis tree T , admissible solution of the
considered problem, verifies the node ordering condition ,

if : each node of the i th  level has an a priori occurrence
probability greater than the one of any node appearing on a
level j such that d j i≥ > ≥ 0 , where d  represents the

diagnosis tree depth.
Then, such binary diagnosis tree T  is optimal according to

the objective function ( )K T .
Proof
As seen previously, the optimality, under test exclusivity
and unit weighted assumptions, can be expressed as the
minimization of the following objective function :

( )K T P C Fi i
i

n

( ) = ×
=
∑

1

For any diagnosis tree T  which does not verify the node
ordering condition, it exists at least one sequence of
permutations (which establishes the node ordering
condition between two specific nodes) to apply on T  in

order to obtain the optimal diagnosis tree T *  which, for all
of its nodes, verifies the node ordering condition.

Each application of one of these permutation reduces the
objective function value of the  studied diagnosis tree.
Actually, by considering two faults F1  and F2  with

occurrence probabilities P1  and P2  such as P P1 2> . Let

i  and j  be two different levels of the studied diagnosis

tree T1  such as d j i≥ > ≥ 0 , where d  represents the

diagnosis tree depth.
For this diagnosis tree T1 , F2  is placed on level i  and

F1  on level j , the objective function ( )K T1  gives :

( ) ( ) ( )

( )( ) ( )( ) ( )

K T j P i P P C F

i P P j i P P C F

k k
k

n

k k
k

n

( )1 1 2
3

1 2 1
3

= × + × + × =

× + + − × + ×

=

=

∑

∑
The diagnosis tree T2  is obtained by performing the

permutation which consists in placing F1  on level i  and

F2  on level j , the objective function ( )K T2  gives :

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

K T j P i P P C F

i P P j i P P C F

k k
k

n

k k
k

n

2 2 1
3

1 2 2
3

= × + × + × =

× + + − × + ×

=

=

∑

∑
As P P1 2> , ( ) ( )K T K T1 2≥ .

So, the application of one permutation according to the
node ordering condition reduces the objective function
value.

Moreover, once all the nodes of the current tree are sorted
by level, this tree verifies the node ordering condition and
no permutation, according to the node ordering condition,
is applicable. Consequently, the objective function value of
this diagnosis tree can not be reduced and is optimal.

Hence, this tree is the optimal diagnosis tree T * . 

Appendix B

Theorem 4.3.
In case of exclusive and unit weighted binary tests, the
Huffman algorithm creates an optimal complete binary

diagnosis tree according to the objective function ( )K T .
Proof
From the property 4.1., it can be deduced that the two least
occurrence probability faults of the considered fault set are
always placed on the deepest level of the optimal diagnosis
tree corresponding to this fault set.

Actually, at each iteration of the Huffman algorithm, the
two least occurrence probability faults are found, these two
faults are suppressed from the studied fault set and a new
fault is created which has, as occurrence probability, the
sum of these two least occurrence probabilities. This new
virtual fault is, in the complete binary tree, the father node
of these two precedent least occurrence probability faults.
So, at each iteration of the Huffman algorithm, a new fault
set  is considered and  the two least occurrence probability
faults of this set are affected to the two deepest leaves of
the optimal diagnosis tree corresponding to this set.

Consequently, by reapplying recursively the previous
reasoning and treatment, node ordering condition is always
verified and, by the previous property, optimality is
ensured.

Moreover, an optimal binary diagnosis tree T *  obtained
by Huffman algorithm, whose objective function value is

K *  the optimal value for the considered problem, is

always complete (i.e. T *  does not contain empty leaves)
by construction.



Appendix C

Theorem 4.5.
In case of exclusive unit weighted multi-modality tests,
from the optimal binary diagnosis tree obtained by

Huffman algorithm T * , the multi-modality extension

algorithm creates an optimal diagnosis tree TM
*  according

to the objective function ( )K T .
Proof
As seen previously, the optimality under test exclusivity
assumptions can be expressed as the minimization of the
following objective function :

( )K T P C Fi i
i

n

( ) = ×
=
∑

1

First, it can be proven that, at each step of the multi-
modality algorithm, the current tree T  is optimal

according to the objective function ( )K T . To reach this

optimality, the current tree T  must verify the node
ordering condition (according to the Property 4.1.).

Let A  be the studied node during the multi-modality
algorithm and T0  the three first levels of the binary sub-

tree whose A  is the root. On the figure 4.1., the general
case is considered, where these three levels are assumed to
be full (the maximum node cardinality that can be placed
on a binary tree of three levels is 7).

Figure 4.1. : Central treatment of the multi-modality extension algorithm

The relations between the nodes

{ }A B C D E F G, , , , , , , involved by the construction of

the tree T0  according to the Huffman algorithm, are

expressed below and verify the node ordering condition
(according to property 4.1. and theorem 4.3.).
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The tree T1  is obtained by applying the central treatment

(break the biggest child; and reorder the children of the studied

node;) on node A  of the tree T0 . The relations between the

nodes of the resulting tree T1  are expressed below and

verify also the node ordering condition.

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
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Consequently, the multi-modality extension algorithm
applied on a binary diagnosis tree obtained by Huffman
algorithm verifies this node ordering condition at each of
its steps and, so, ensures optimality of the objective

function ( )K T .

Secondly, it is important to prove that affecting the i th

highest modality cardinality test to the i th  level of the tree
is the optimal way to decrease the depth of the tree and so

to decrease the objective function ( )K T .

Let S1  and S2  be two tests of modality cardinality m1

and m2  with m m1 2>  and a set of n  faults

{ }F Fn1 ,...,  affected with the occurrence probabilities

Level  1

Level  2

Level  0

C D E

F GGFED

CB

AA
T0 T1



Pk  such that Pk
k

n

=
∑

1

, P Pn1 > >...   and

( )m n m m1 1 2< ≤ × .

In the diagnosis tree T1 , S1  is applied just before S2 ,

the number of faults n  is such that

( )n m i i m= − + ×1 2  with 1 1< ≤i m  and

K T P Pk k
k m i

n

k

m i

( )1
11

2
1

1

= + ×
⎛

⎝
⎜

⎞

⎠
⎟

= − +=

−

∑∑ .

In the diagnosis tree T2 , S2  is applied just before S1 ,

the number of faults n  is such that

( )n m j j m= − + ×2 1  with 1 2< ≤j m  and

K T P Pk k
k m j

n

k

m j

( )2
11

2
2

2

= + ×
⎛

⎝
⎜

⎞

⎠
⎟

= − +=

−

∑∑ .

So,  if  m i m j1 2− ≥ −  then  K T K T( ) ( )1 2≤  else

K T K T( ) ( )1 2>

m i m j m
n m

m
m

n m

m1 2 1
1

2
2

2

11 1
− ≥ − ⇔ −

−
−

≥ −
−

−
⇔ − − − − −
≥ − − − − −

m m m n m m

m m m n m m
1 2 1 1 1

2 2 1 2 2

1 1 1

1 1 1

( )( ) ( )( )

( )( ) ( )( )

⇔ − − + − + + −

≥ − − + − + + −

m m m m m m nm n m m

m m m m m m nm n m m

1
2

2 1
2

1 2 1 1 1
2

1

2
2

1 2
2

1 2 2 2 2
2

2

⇔ − ≥ −m m m n m m m n1 1 2 2 1 2( ) ( )
Since n m m≤ 1 2 ,

⇔ ≥m m1 2  which is true by hypothesis.

Consequently, K T K T( ) ( )1 2≤ , hence, it is optimal to

apply the i th  highest modality cardinality test to the i th

level of the tree.
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